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Impact of environmental noise on oscillatory pattern formation in crystal growth:
Plagioclase feldspar

Sergei Katsev and Ivan L’Heureux
Ottawa-Carleton Institute for Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

~Received 26 October 1999!

Recently, a model for oscillatory zoning in a geochemical system~plagioclase feldspar! was proposed. In
that model, oscillations in the composition are generated through a Hopf bifurcation. In this paper, the effects
of fluctuations of the bulk composition are studied by means of computer simulations. It is shown that
environmental noise can lead to pattern formation such as oscillatory zoning, even when no deterministic
periodic solutions exist. The fluctuations in the bulk composition thus lead to an enlargement of the range of
system’s variables values for which oscillatory zoning occurs. Coherence resonance close to the Hopf bifur-
cation is also observed in such a system.

PACS number~s!: 05.40.2a, 05.45.2a, 05.65.1b, 91.65.2n
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I. INTRODUCTION

Many naturally formed minerals exhibit a more or le
regular variation of chemical composition from the core
the crystal to its rim. Such patterns are called oscillat
zoning, and are found in a great variety of minerals@1#
formed under very different conditions. Oscillatory zoning
observed in crystals from igneous, sedimentary, and m
morphic environments, and in hydrothermal deposits. Pr
ably the oldest known example of this phenomenon is os
latory zoning in plagioclase feldspar, which is a mineral th
is found in many rocks. Oscillatory zoned samples are m
common in intermediate composition volcanic rocks@2,3#. In
this paper, we investigate the impact of environmental no
on pattern formation in plagioclase.

This mineral is essentially a binary solid solution wi
two end members: anorthite CaAl2Si2O8 ~An! and albite
NaAlSi3O8 ~Ab!. Oscillatory zoned samples show clear
visible patterns, whereby the An concentration varies fr
the core of the crystal to its rim. Microprobe analysis sho
that the An molar composition varies by approximate
5–15 %. Typical samples have tens of zones ranging
thickness from 10 to 100mm. Superimposed on these mo
or less regular variations, abrupt changes and irregular
terns are often found@3#. The oscillatory zoned crystals ar
formed from multiply saturated silicate liquids withi
magma chambers. The patterns are found frozen into cry
erupted from these chambers as lava flows, or as the er
remnants of slowly cooled plutonic rocks. The crystallizati
from the melt typically occurs in far-from-equilibrium con
ditions, so that kinetic arguments must be used to model
pattern formation.

Holten and co-workers@4,5# suggested that external nois
~such as rapid variations of fluid’s composition due
magma mixing, gas releases or temperature changes! may
play an important role in the formation of the oscillato
patterns in crystals. By studying the effects of environmen
noise on a generic crystal-melt system, they showed
fluctuations that occur on scales much larger than the siz
the growing crystal produce realistic zoning patterns. In
PRE 611063-651X/2000/61~5!/4972~8!/$15.00
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first work @4#, they used a bounded Brownian noise fluctu
tion superimposed on the bulk composition with a rath
long correlation time and large amplitude~about 30% of the
average bulk composition!. As a consequence, the concentr
tion pattern follows the fluctuations of the bulk concentr
tion. In this case, the diffusive system acts as a filter t
eliminates small scale variations. In the second paper@5#,
four crystal growth models were analyzed for possible no
sensitivity: plagioclase growth in magmatic systems@6#, car-
bonates in sedimentary systems@7#, garnets in hydrotherma
systems@8#, and silicate growth from a melt@9#. In the ab-
sence of noise, all these models produce oscillatory or c
otic solutions. It was found that these solutions are sensi
to noise in the boundary condition, the plagioclase mo
being the most sensitive. In the garnet case, external n
may cause synchronization, so that different crystals deve
statistically similar zoning patterns, even if zoning is co
trolled by local nonlinear processes. This implies that intr
rystalline similarity in zonation is not necessarily a dire
reflection of gross changes in the external conditions. In
simulations, a bounded Brownian noise with a rather lo
correlation time was used.

In contrast, our simulations indicate that oscillatory zo
ing can be caused by uncorrelated noise of small amplitu
In presence of noise, our model produces oscillatory patte
even when no deterministic oscillations exist. The patte
are then formed as a result of the complex interplay betw
the stochastic external processes and the internal nonli
dynamics of the system. The external noise thus trigg
rather than drives, the system’s dynamics, and noise-indu
phenomena, such as coherence resonance and advanc
of bifurcation points, are possible.

The paper is organized as follows. First we review t
deterministic oscillatory zoning model and introduce its si
plified form, which allows a more detailed analysis. Then
discuss the terms that describe the effects of environme
noise. In Sec. IV we present the simulation results and
cuss them. Section V describes the Fokker-Planck equa
and the analytical method that allows to predict the behav
of systems subjected to noise, as applied to the present s
Finally, we conclude our findings in Sec. VI.
4972 ©2000 The American Physical Society
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II. MODEL

A. Deterministic growth model

Our model is based on the isothermal nonlinear plag
clase growth model proposed by L’Heureux and Fow
@10,11#. In the rest of this paper, we will refer to this mod
as the partial differential equation~PDE! model. We assume
crystal growth in one dimension, and we choose a frame
reference moving with the interface, so thatx50 corre-
sponds to the crystallization front. The dynamical evoluti
of the concentration of An~mole per unit volume! in the melt
c(x,t) is then described by the diffusion equation

]c

]t
5

]

]x S D
]c

]xD1V„c~0,t !…
]c

]x
, ~1!

where c(0,t) is the An concentration in the melt near th
interface, andD is the effective diffusion coefficient. We
neglect the concentration dependence of this coefficient.
growth velocityV is determined only by the local concentr
tion at the interfacec(0,t). Since molar volumes of An and
Ab are nearly equal, the molar concentrationc can be non-
dimensionalized by the molar volume of An@10#. This way,
it becomes equivalent to the molar composition of An in t
solution and is bounded 0,c,1.

A realistic expression forV„c(0,t)… for a given tempera-
ture T was approximated@10# by fitting the empirical data
obtained for synthetic plagioclase@12# to the Calvert-
Uhlmann growth model@13#:

V5U~RsRc
2!1/3. ~2!

Here the growth is interpreted as a geometric average of
mechanisms, a longitudinal growthRs by surface nucleation
and a continuous growthRc along the surface.U denotes a
velocity scale. Expressions forRs andRc are given by

Rs5 expS 2
3a

TDTDexpS 2
b

T2Tg
D , ~3!

Rc5F12 expS 2
DG

RTD GexpS 2
b

T2Tg
D . ~4!

Here the parametera is related to the surface tension of th
critical nucleus,b to the viscosity of the melt, andDT5TL
2T is the undercooling, withTL being the liquidus tempera
ture andTg the glass-transition temperature.DG is the dif-
ference in molar Gibbs free energy between the crystal
the melt. The concentration dependence of the growth ve
ity comes mainly from the liquidus lineTL„c(0,t)… and the
velocity scaleU„c(0,t)… @10#.

The boundary condition far from the crystal-melt inte
face is such that the concentration is equal to the bulk c
centration of An in the melt:

c~`,t !5 ĉ. ~5!

The boundary condition at the growing front is derived fro
the continuity of mass flux at the crystal interface:
-
r

of
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d
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D
]c

]x U
x50

1@c~0,t !2cs~ t !#V50. ~6!

Here cs(t) is the interface An concentration in the crysta
We have neglected the diffusion in the solid phase. A n
linear phenomenological partitioning relation betweencs(t)
andc(0,t) was proposed by Lasaga@14#:

cs~ t !5
KDBc~0,t !

A1~KD21!c~0,t !
. ~7!

If c8 refers to the concentration of another major compon
~i.e., Ab! in the solution, then KD5cs(t)c8(0,t)/
@c(0,t)cs8(t)# is an effective exchange-equilibrium consta
whereasA5c(0,t)1c8(0,t) and B5cs(t)1cs8(t) are ap-
proximately constants@14#. Whenc refers to the concentra
tion of a trace element, a simple relation can also be u
that employs a constant partitioning coefficientK:

cs~ t !5Kc~0,t !. ~8!

The nonlinear relation~7! reduces to Eq.~8! if we assume
c'const in the denominator of Eq.~7!. For simplicity, ex-
pression~8! is used in the reduced model described belo
The nonlinear coupling necessary to generate self-oscilla
solutions is generated by the nonlinear concentration dep
dence of the growth velocityV.

In conditions close to equilibrium, the partitioning coeffi
cientsKD or K can be derived from the equilibrium phas
diagram, and are larger than unity. However, in situatio
where far-from-equilibrium conditions prevail,KD or K must
be derived from kinetic arguments@9# and can take values
smaller than 1.

In the model@Eqs.~1!—~7!#, a steady state solution forcs
exists. ForKD.1, this steady state solution is stable and t
system relaxes to this fixed point without oscillations. Th
corresponds to the situation where the crystal has a cons
well defined An composition, as is observed in cryst
formed in close-to-equilibrium conditions. ForKD,1 there
is a regime where underdamped oscillations to the ste
state exist. For smaller values ofKD , the system undergoes
Hopf bifurcation, beyond which the attractor is a limit cycl
For a typical value ofĉ50.3 atT51400 °C, the Hopf bifur-
cation occurs atKD50.24 @11#. A transition to chaotic be-
havior through a period doubling sequence is also obser
for still smaller values ofKD . The simpler form@Eq. ~8!# of
the partitioning relation~7! produces similar sequences
dynamical behavior: asK decreases, there is a transition fro
steady state to a limit cycle through a Hopf bifurcation a
then to chaos@10#.

B. Reduction to two nodes

The description of the diffusion process can be simplifi
by rewriting the model in terms of ordinary differential equ
tions. Wang and Merino@15# proposed a dynamical model o
zoning in calcite and plagioclase, which is based on the e
lution of the concentration of two compounds at one po
near the interface. This results in two coupled ordinary d
ferential equations, which can generate oscillatory solutio
Here we adopt the spirit of their approximations, and take
idea one step further by suggesting a reduction of the c
tallization dynamics to the concentration evolution at tw
distancesL1 andL11L2 from the growth front~Fig. 1!. This
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4974 PRE 61SERGEI KATSEV AND IVAN L’HEUREUX
enables us to describe the essentially continuous proces
two coupled ordinary differential equations that mimic t
general dynamics of the parent model and allow for the p
sibility of a limit cycle. A stability analysis can be easil
performed as well. We will refer to this approximation as t
two-node model, from the nomenclature conventionally u
in finite element techniques.

We integrate the diffusion equation~1! with respect to the
space coordinate, and take the following approximations@15#
~see Fig. 1!:

E
0

L1
cdx5@c~L1!1c~0!#L1/2, ~9!

]c

]x U
0,x<L1

5@c~L1!2c~0!#/L1 . ~10!

Similarly,

E
L1

L11L2
cdx5@c~L11L2!1c~L1!#L2/2, ~11!

]c

]x U
L1,x<L11L2

5@c~L11L2!2c~L1!#/L2 . ~12!

The boundary condition~5! becomesc(L11L2)5 ĉ. After
imposing condition~6! and taking into account the partitio
relation~8!, we obtain the following system of two ordinar
differential equations:

ȧ[ f 1~a,b!5db~11 l 1 l 2!2da~11 l !2dl22v~a!Ka

1v~a!b~11 l !2v~a!l , ~13!

ḃ[ f 2~a,b!5dl22db l ~11 l !1dla1v~a!l 2v~a!lb.
~14!

FIG. 1. Reduction of the plagioclase growth-transport proces
to the An concentration evaluated at two nodes: at the interface,
at the distanceL1 from the interface. The smooth concentratio
profile is approximated by linear segments. The concentration a
distanceL11L2 is taken to be equal to the bulk concentration

An, ĉ. The An concentration in the crystalcs is related to the
concentration in the melt at the interfacec(0) through the partition-
ing relation~8!.
by

s-

d

Here the dimensionless variables area5c(0)/ĉ,b
5c(L1)/ ĉ,l 5L1 /L2 ,v(a)5V/V0, and d5D/(V0L1), and
the dimensionless time ist52tV0 /L1. We have introduced
V0 as a typical growth velocity scale; for instance, the va
corresponding to the steady growth regime. We approxim
the crystal growth velocity as

V~a!5V0 exp@m~a2ast!#, ~15!

where ast is the concentration in the melt in the stea
growth regime andm is a constant. Equation~15! is a fairly
good approximation of the experimental data@12# for a wide
range of temperatures ifĉ is large enough~e.g.,ĉ.0.2, and
for a typical growth temperatureT51400 °C @10#!. For T
51400 °C the corresponding value of the factorm is 2.96.

C. Stability analysis

For all values of the parameters in the two-node mo
@Eqs. ~13! and ~14!#, there exists at least one fixed poin
which we will call ‘‘global.’’ By definition, we choose a
velocity scale such thatV5V0 at this point for all paramete
values. A stability diagram for this fixed point is shown
Fig. 2. Similarly to the full plagioclase growth model@Eqs.
~1!–~7!#, for K.1 the fixed point is always a stable node. A
K decreases, the fixed point changes to a stable focus
then to an unstable focus through a Hopf bifurcation. F
reasonable values of the parametersm52.96, l 50.25, and
d50.5 the Hopf bifurcation generates a stable limit cycle
K50.439. ForK,0.426, two new fixed points are create
through a tangent bifurcation: a saddle point and a sta
node. The limit cycle solution then loses its stability. Sin
the Hopf bifurcation occurs at a value ofK higher than in the
PDE model, we do not expect quantitative agreement
tween the two models. However, the dynamics are analog
in the neighborhood of the Hopf bifurcation. For our purpo
of investigating how external noise can influence the gene

es
nd

he FIG. 2. Stability diagram for the global fixed point in the two
node model described by Eqs.~13! and ~14!. The stability regions
are as follows: S, saddle; UN, unstable node; UF, unstable fo
SF, stable focus; SN, stable node. The parameters arel 50.25 and
d50.5.
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PRE 61 4975IMPACT OF ENVIRONMENTAL NOISE ON . . .
tion of periodic solutions, the most interesting region is t
one close to the Hopf bifurcation, where the global fix
point is a stable focus.

III. STOCHASTIC ENVIRONMENTAL FLUCTUATIONS

Suppose the system is subjected to some environme
noise such as fluctuations of temperature or concentration
elements. Since changes in the system’s parameters ca
caused by a variety of different factors~e.g., gas releases
magma mixing, etc.!, it is reasonable to assume that the a
plitude of the fluctuations would follow a Gaussian distrib
tion. We also postulate that these changes occur over a
scale which is much faster than the crystal growth time, a
can be considered uncorrelated. Therefore, we choose w
Gaussian noise as an approximation for the environme
fluctuations. Plagioclase crystals grow in an environm
where thermal diffusivity is much greater than compon
diffusion. Consequently, the process is mostly isotherm
@16#. We will investigate the effects of fluctuations in th
bulk concentrationĉ of the element in a fashion similar t
Holten et al. @4#.

In the full growth model described by the PDE~1!, the
noise would appear in the modified boundary condition~5!,

c~`,t !5 ĉ@11sj~ t !#, ~16!

wheres denotes the amplitude of the noise relative toĉ, and
j(t) is a Gaussian white process with zero mean:

^j~ t !&50, ~17!

^j~ t !j~ t8!&52d~ t2t8!. ~18!

In the reduced two-node model@Eq. ~13!#, fluctuations of the
form c(L11L2 ,t)5 ĉ@11sj(t)# lead to multiplicative noise
terms

ȧ5 f 1~a,b!2~dl21v l !sj~ t !, ~19!

ḃ5 f 2~a,b!1~dl21v l !sj~ t !, ~20!

wheref 1 and f 2 are the right hand sides of Eq.~13!. We have
disregarded the terms that contain the time derivative of
noise. These terms become important when the correla
time of the noise approaches zero. However, prelimin
simulations, in which the algorithm of Ref.@17# for an
Ornstein-Uhlenbeck colored noise was used, indicate
there is a wide range of noise correlation times for which
approximation~19! is valid. In this range the correlation tim
of the noise is large enough so that the derivative terms
negligible, and at the same time it is much smaller than
dynamical time scale of the deterministic system so that
white noise approximation is still useful. It should be not
that, although the terms that contain the time derivative
the noise have no physical meaning in the case of w
noise, they may play a significant role in the dynamics of
system in the case of colored noise~e.g., it may shift the
bifurcation point from its deterministic value@18#!. A
detailed analysis of the effect of noise color is und
investigation.
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IV. RESULTS AND DISCUSSION

Concentration profiles were generated in two ways. T
partial differential equation~1! was solved using a Crank
Nicholson finite difference scheme with iteration of the no
linear terms. The ordinary stochastic differential equatio
~19! and ~20!, were integrated using the first order meth
adapted from Ref.@17#, which turned out to be sufficiently
precise for our purposes. The Stratonovich interpretation
this algorithm was employed. Other algorithms such as H
un’s @19# yield similar results. To obtain results analogous
direct observations, we need to produce the spatial profil
the concentration in the crystal. In order to do so, the sp
coordinate was obtained by integration@10,11#:

x~ t !5E
0

t

v„a~ t8!…dt8. ~21!

Transformation of the time series into spatial profiles gen
ally biases the shape of the concentration spikes toward
crystallization front.

We investigated the system’s response to external nois
the region of the parameter space that corresponds to
deterministically stable fixed point close to the Hopf bifu
cation. Typical crystal concentration profiles simulated a
cording to the PDE and the two-node models, respectiv
are shown in Figs. 3 and 4. The simulation results show
the generated patterns exhibit an oscillatory behavior. T

FIG. 3. Spatial concentration profile generated by the full P

model.T51400 °C, ĉ50.3, K50.25, ands5531023. The deter-
ministic attractor for these parameter values is a stable focus.
transient solution is not shown. One space unit correspond
6.62mm.

FIG. 4. Spatial concentration profile generated by the two-n

model. K50.445, m52.96, l 50.25, d50.5, ĉ50.3, and s
51024. The deterministic attractor for these parameter values
stable focus. The transient solution is not shown. One space
corresponds to 21.79mm.
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oscillatory concentration patterns are possible in the prese
of noise even when no oscillation exists deterministically

The amplitude of the stochastic oscillations of the crys
An concentration derived from the PDE model is about 2
for a noise amplitude of 531023. This is of the same orde
of magnitude as the lower limit of observed concentrat
variations. In Fig. 3, the average zone width is 27mm.

Replacing the exponential diffusion profile of concent
tion by linear segments~Fig. 1! makes the interface compo
sition more susceptible to the fluctuations of the bulk co
centration. The two-node model thus possesses a slig
greater sensitivity to the external noise. Changes in cry
An concentration of the same magnitude~2%! are generated
by a noise amplitude of only 1025. In Fig. 4, the average
zone width is 416mm, which is large compared to actu
zone widths. However, as mentioned earlier, quantita
agreement is not expected from this simplified model. N
ertheless, both the full and reduced models exhibit sim
qualitative dynamics in terms of the shape of the concen
tion profiles.

A spectral analysis was performed on the time ser
Close to the Hopf bifurcation, the frequency of the moti
around the stable focus manifests itself in the dynamics
the noise-perturbed system. While the spectrum of the ex
nal noise is flat, the characteristic peak of the system’s n
ral frequency is clearly visible in the power spectrum~Figs. 5
and 6!. The amplitude of the oscillations increases as
noise amplitude increases. As the parameterK increases, thus
taking the system away from the Hopf bifurcation, the osc
lations become smaller in amplitude, and additional frequ
cies become more noticeable.

In general, before the Hopf bifurcation point, an increa
in the noise intensity may have two general effects on

FIG. 5. Power spectrum computed from the time series co
sponding to the space concentration profile shown in Fig. 3. O
frequency unit corresponds to 0.228 Hz.

FIG. 6. Power spectrum computed from the time series co
sponding to the space concentration profile shown in Fig. 4. O
frequency unit corresponds to 0.019 Hz.
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power spectrum of the response@20#. First, due to the non-
linearity of the system, the quality factor of the oscillat
deteriorates, and consequently the spectral peak may bec
broader. This effect was found to be insignificant in t
present case. The width of the peak remained approxima
constant over a wide range of noise intensities. Second
the noise kicks the system’s trajectory farther from its sta
point, the amplitude of the damped oscillation becom
larger, thus increasing the height of the peak in the pow
spectrum. The exact dependence of the peak height on
intensity of external perturbations is determined by the s
tem’s nonlinearity, and may be partly controlled by nois
The strength of the response increases with the amplitud
the noise but is limited by the system’s nonlinearity. As
result, the system’s response is maximized for a certain n
amplitude.

The strength of the system’s response to the exte
noise can be quantified byR, the signal-to-noise ratio~SNR!.
While several definitions of the SNR are used in charac
izing the behavior of a noisy system near the bifurcat
@20,21#, we choose the one that is best suited to describe
system’s response around a frequency of interest relativ
the broad-spectrum response around this frequency. Thu
define the SNR at some particular frequencyV as the ratio of
the area of the peak to the characteristic value of the ba
ground spectral response at this frequency@22#:

R5F E
V2Dv1

V1Dv2
S~v!dvG /Sb~V!. ~22!

HereDv11Dv2 defines the width of the integration window
aroundV, and Sb(V) is the value of the floor line at the
frequency of interest. The floor line is drawn to join th
boundaries of the peak defined by the integration windo
The functionS(v) is a Fourier transform of the correlatio
function:

S~v!5 ĉ22E
2`

1`

e2 ivt
Š^cs~ t1t!cs~ t !&‹dt. ~23!

The double bracket indicates that the correlation function
averaged over the realizations of the noise as well as ove
phase of the deterministic damped oscillations that exis
the region where the fixed point is a stable focus.

The SNR’s obtained from both models have a distin
peak~Figs. 7 and 8!. The system’s response to the extern
noise shows a steep increase in the range of small n
intensities. As the noise increases, the SNR slowly decrea

The response of the system to noise indicates that a
called noisy precursor of the bifurcation@23# is observed in
the vicinity of the Hopf bifurcation. In general, before th
Hopf bifurcation, the power spectrum will have a strong r
sponse at a frequency close to that of the limit cycle crea
at the bifurcation point. The fact that the SNR curve pas
through a maximum suggests that there is a so called co
ence resonance~CR! @20#, i.e., the response of a nonlinea
system to noise is optimized for a certain noise amplitu
Coherence resonance, also often called autonomous or i
nal stochastic resonance, occurs in nonlinear oscillating

-
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e
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tems, whose internal dynamics depends on the noise am
tude. As pointed out@20#, the behavior of the SNR in CR i
often very similar to that of stochastic resonance~SR!. The
phenomenon of SR typically occurs in periodically driv
stochastic bistable systems, and has been the object of
ous studies in the past decade~for a review, see Ref.@22#!.
The resonancelike amplification of a weak external sig
occurs when its frequency matches the characteristic rat
stochastic hopping between the two states. In SR, the SN
a function of the noise amplitude is a curve with a we
defined maximum. Coherent resonance is said to occur w
the noise stimulates a coherent motion in an autonom
system~i.e., without external signal!.

Along with the main frequency, several lower frequenc
consistently appear near the main peak, and become m
apparent as the system moves farther from the bifurcatio
the stable region. One of them, located close to the m
frequency, causes a beatlike pattern in the concentration
files ~Fig. 3!.

It is interesting to note that even for values ofK.1, when
no damped deterministic oscillation exists, the external no
has some organizing influence on the crystallization proc
~Fig. 9!. Here small variations of concentration form a co
related pattern that is very different from the input uncor
lated noise~in contrast to the case studied by Holtenet al.
@4#!.

FIG. 7. Signal-to-noise ratio computed from the PDE mod

T51400 °C, ĉ50.3, andK50.25. The deterministic attractor fo
these parameter values is a stable focus. The spectral respon
averaged over 400 noise realizations as well as over the phase o
deterministic damped oscillations. The window of integration in E
~22! contained 14 bins.

FIG. 8. Signal-to-noise ratio computed from the two-no
model.K50.445,m52.96, l 50.25, andd50.5. The deterministic
attractor for these parameter values is a stable focus. The spe
response is averaged over 1000 noise realizations as well as
the phase of the deterministic damped oscillations. The window
integration in Eq.~22! contained 32 bins.
li-

ri-

l
of
as

en
us

s
re

in
in
ro-

e
ss

-

Figure 10 shows a return map for the PDE model, i.e.,
width Wn11 of the (n11)th zone plotted versus the widt
Wn of the nth zone in Fig. 3. This type of analysis is com
mon in nonlinear dynamics to identify what might be a lo
dimensional chaotic attractor. Since random noise is a
part of our models, there should be no particular pattern
small noise intensities. Indeed, in the low noise range
points seem to fill up the space evenly, which is a signat
of randomness. When the noise takes the system far eno
from its steady state, the deterministic dynamics of the s
tem prevails over the stochastic motion. For large excursi
the return map seems to exhibit a triangular pattern simila
the one observed for natural plagioclase@24#. The emergence
of such a pattern may indicate a possibility of noise-induc
chaos. The return maps obtained from the reduced two-n
model show no sign of such a pattern~Fig. 11!. This can be
expected because the triangular nonrepeating pattern ma
a signature of chaotic attractor while the dimension of mo
~13! does not allow for chaotic solutions. The idea that zo
ing in plagioclase could be a result of a complex interp
between the deterministic nearly oscillatory internal dyna
ics and the external stochastic fluctuations is supported
the fact that in many cases the return maps for plagioc
appear random, and no specific fractal dimension can
found @4#.

V. FOKKER-PLANCK EQUATION

Given the Langevin type equations~13! and~14!, we can
obtain a corresponding equation describing the evolution

.

e is
the
.

tral
ver
f

FIG. 9. Spatial concentration profile generated by the P

model.T51400 °C, ĉ50.3, K51.20, s5531023. The determin-
istic solution for these parameter values is a stable node. The
sient solution is not shown. One space unit corresponds to 210mm.
Variations occur on a much larger horizontal scale than in the c
of smallerK because of the strong dependence of the steady s
velocity scale to the value ofK.

FIG. 10. Return map corresponding to the space concentra
profile generated by the full PDE model of Fig. 3. One space u
corresponds to 6.62mm.
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the probability density of finding the system in a certa
region of parameter space@25#. This equation allows visual
ization of the shape of the probability density, to investig
the possibilities of noise-induced states and shifts in the
terministic bifurcation points as the system paramet
change. In the case of white noise, this equation@the Fokker-
Planck equation~FPE!# is easily derived and can be solve
exactly for univariate systems. In most multivariate syste
the FPE must be solved numerically.

The FPE for the two-node model@Eqs.~19! and~20!# can
be written in the Stratonovich interpretation as

]p

]t
52pS ] f 1

]a
1

] f 2

]b D2 f 1

]p

]a
2 f 2

]p

]b

1
s2

2 Fg2S ]2p

]a2
1

]p

]2b2
22

]2p

]a]b D
13gg8S ]p

]a
2

]p

]b D1p~g821gg9!G , ~24!

wherep5p(a,b,t) is the probability density of the system
to be in a state around (a,b) at time t, f 15 f 1(a,b) and
f 25 f 2(a,b) are the deterministic terms defined in Eqs.~13!
and ~14!, g5g(a)52@dl21v(a) l # is the multiplicative
part of the stochastic term in Eqs.~19! and~20!, ands is the
intensity of the noise. In the stationary regime (]p/]t50),
the boundary conditions are naturally defined as the abs
of probability flux across the borders of the region
,$a,b%,1/ĉ.

The stationary version of Eq.~24! was solved numerically
using the successive overrelaxation method. Figure 12 sh
the stationary probability distribution corresponding to t
regime for which the stable focus exists before the H
bifurcation (K50.445, s50.02). The coordinates are th
dimensionless An concentrationsa and b in the melt near
the interface and at the distanceL1 from it, respectively. The
maximum of the probability density is shifted from the d
terministic fixed point. A small crater is formed, which su
gests the presence of a stochastic limit cycle, and co
quently a noise-induced shift in the bifurcation poi
~advancement!. A distinct feature is the presence of a ta
shaped slow manifold adjacent to the area around the d
ministic fixed point. The maximum of the probability densi
is located on this manifold. In terms of the system’s dyna

FIG. 11. Return map corresponding to the space concentra
profile generated by the two node model of Fig. 4. One space
corresponds to 21.79mm.
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ics, any relatively large fluctuation in the concentrati
makes the system converge to this manifold very quick
After that, it takes a long time to come back to the vicinity
the stable focus. This results in a sawtooth shape of the c
centration time series and space profiles at high noise in
sities.

The question arises whether the noise truly advances
Hopf bifurcation point. In a ‘‘naive’’ generic case, based o
the normal form for the Hopf bifurcation, postponement
the bifurcation is expected. However, it was shown@18# for
the Brusselator system~an important example exhibiting
Hopf bifurcation! that multiplicative noise coupled to a fas
variable may cause an advancement of the bifurcation po
Although for this particular case, analog simulations@26#
found only postponements, some qualitative agreement w
the prediction of Ref.@18# in terms of shifts in the probabil-
ity density was observed. In our model, the system’s mot
is faster in a direction approximately perpendicular to t
tail-shaped slow manifold of Fig. 12. From Eqs.~19! and
~20!, it is seen that the variablea1b is deterministic. There-
fore, the noise effectively drives the system in the direct
b52a, which approximately corresponds to the directi
of the fast motion. This provides a coupling mechanism
tween the noise and a fast variable in analogy with the Br
selator case@18#. Whether we can analytically prove ad
vancement of the Hopf bifurcation in the present case, as
suggested by our numerical results, is currently the subjec
further studies.

VI. CONCLUSION

We have shown that fluctuations of environmental para
eters can lead to pattern formation exhibiting an oscillat
character in plagioclase. Such fluctuations may suppos

on
it

FIG. 12. Logarithm of the stationary probability density o
tained as a solution of the Fokker-Planck equation~24! correspond-
ing to the 2-nodes model.K50.445, d50.5, m52.96, s50.02,

andĉ50.3. The deterministic attractor for these parameter value
a stable focus located ata52.15, andb51.35. Darker areas cor
respond to higher probability densities. The spacing between l
curves is 0.2 and the value of lnp corresponding to the light leve
curve in the crater is20.3. The presence of a crater suggests
existence of a limit cycle and, consequently, a shift in the Ho
bifurcation point ~advancement!. The ‘‘tail’’ represents a slow
manifold, which is responsible for the appearance of sawtooth
terns in the spatial concentration profiles at higher noise intensi
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be caused by magma mixing, changes in H2O content, re-
leases of gases, or temperature variations. The exact phy
nature of these environmental fluctuations as well as t
magnitude is an interesting question but outside the scop
the present work.

In our model of plagioclase growth from melt, relative
small random fluctuations of the bulk concentration of A
stimulate the internal dynamical processes, which result
more or less regular zoning. Close to a Hopf bifurcation,
noise causes oscillations with a frequency close to the
quency that the system would have after the bifurcation. A
side effect, some lower frequencies are also generated.
signal-to-noise ratio exhibits a distinct peak typical of coh
ence resonance phenomena. The effect of noise thus ex
the available parameter space for which oscillatory zon
may be observed.

The return maps generated according to the full stocha
PDE model for large excursions show a triangular patt
similar to the one observed in natural plagioclase. The
duced two-node model, in which the spatial dependence
cal
ir
of

a
e
e-
a
he
-
nds
g

tic
n
-

of

the concentration is approximated by straight lines, ha
dynamical behavior which is similar to the full PDE mod
around the Hopf bifurcation point. Solution of the Fokke
Planck equation for this case suggests the possibility of
vancement of the bifurcation due to noise.

The presence of a slow manifold in the region of pha
space adjacent to the area around the deterministic fi
point results in oscillations taking the form of spikes. Sin
the model is described by two variables, it is unable to p
duce chaotic deterministic solutions. As a next step, o
could suggest a three-node reduction that would then al
one to simulate the chaotic behavior.
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