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Impact of environmental noise on oscillatory pattern formation in crystal growth:
Plagioclase feldspar
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Recently, a model for oscillatory zoning in a geochemical systglagioclase feldspamwas proposed. In
that model, oscillations in the composition are generated through a Hopf bifurcation. In this paper, the effects
of fluctuations of the bulk composition are studied by means of computer simulations. It is shown that
environmental noise can lead to pattern formation such as oscillatory zoning, even when no deterministic
periodic solutions exist. The fluctuations in the bulk composition thus lead to an enlargement of the range of
system’s variables values for which oscillatory zoning occurs. Coherence resonance close to the Hopf bifur-
cation is also observed in such a system.

PACS numbegs): 05.40—a, 05.45-a, 05.65+b, 91.65—-n

[. INTRODUCTION first work [4], they used a bounded Brownian noise fluctua-
tion superimposed on the bulk composition with a rather
Many naturally formed minerals exhibit a more or lesslong correlation time and large amplitudgbout 30% of the
regular variation of chemical composition from the core ofaverage bulk compositignAs a consequence, the concentra-
the crystal to its rim. Such patterns are called oscillatorytion pattern follows the fluctuations of the bulk concentra-
Zoning, and are found in a great Variety of minerm tion. In this case, the diffusive SyStem acts as a filter that
formed under very different conditions. Oscillatory zoning is €liminates small scale variations. In the second papér
observed in crystals from igneous, sedimentary, and metdOUr crystal growth models were analyzed for possible noise
morphic environments, and in hydrothermal deposits. ProbSeNSitivity: plagioclase growth in magmatic systei@is car-
ably the oldest known example of this phenomenon is OSC”_bonates In Sed'm‘?r.“ary systefiT, garnets in hydrothermal
latory zoning in plagioclase feldspar, which is a mineral thatsystems[S], and silicate growth from a mejB]. In the ab-

. - . ence of noise, all these models produce oscillatory or cha-
is found in many rocks. Oscillatory zoned samples are most . j P : yorct

_ . I . otic solutions. It was found that these solutions are sensitive
common in intermediate composition volcanic rofRs3]. In

. : . ) . ._to noise in the boundary condition, the plagioclase model
this paper, we investigate the impact of environmental nOIS‘(E)eing the most sensitive. In the garnet case, external noise
on pattern formation in plagioclase. §

o ) . ; . . ___may cause synchronization, so that different crystals develop
This mineral is essentially a binary solid solution with

_ : X . statistically similar zoning patterns, even if zoning is con-
two end members: anorthite Ca8i,0g (An) and albite  {ro|jed by local nonlinear processes. This implies that intrac-

NaAlISi;Og (Ab). Oscillatory zoned samples show clearly rystalline similarity in zonation is not necessarily a direct
visible patterns, whereby the An concentration varies fronyeflection of gross changes in the external conditions. In all
the core of the crystal to its rim. Microprobe analysis showssimulations, a bounded Brownian noise with a rather long
that the An molar composition varies by approximatelycorrelation time was used.
5-15%. Typical samples have tens of zones ranging in In contrast, our simulations indicate that oscillatory zon-
thickness from 10 to 10@m. Superimposed on these more ing can be caused by uncorrelated noise of small amplitude.
or less regular variations, abrupt changes and irregular patn presence of noise, our model produces oscillatory patterns
terns are often founf3]. The oscillatory zoned crystals are even when no deterministic oscillations exist. The patterns
formed from multiply saturated silicate liquids within are then formed as a result of the complex interplay between
magma chambers. The patterns are found frozen into crystatke stochastic external processes and the internal nonlinear
erupted from these chambers as lava flows, or as the erodelynamics of the system. The external noise thus triggers,
remnants of slowly cooled plutonic rocks. The crystallizationrather than drives, the system’s dynamics, and noise-induced
from the melt typically occurs in far-from-equilibrium con- phenomena, such as coherence resonance and advancement
ditions, so that kinetic arguments must be used to model thef bifurcation points, are possible.
pattern formation. The paper is organized as follows. First we review the
Holten and co-workerf4,5] suggested that external noise deterministic oscillatory zoning model and introduce its sim-
(such as rapid variations of fluid’'s composition due toplified form, which allows a more detailed analysis. Then we
magma mixing, gas releases or temperature changay  discuss the terms that describe the effects of environmental
play an important role in the formation of the oscillatory noise. In Sec. IV we present the simulation results and dis-
patterns in crystals. By studying the effects of environmentatuss them. Section V describes the Fokker-Planck equation
noise on a generic crystal-melt system, they showed thand the analytical method that allows to predict the behavior
fluctuations that occur on scales much larger than the size aff systems subjected to noise, as applied to the present study.
the growing crystal produce realistic zoning patterns. In the=inally, we conclude our findings in Sec. VI.
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Il. MODEL

Jdc
= + - =0.
A. Deterministic growth model Dax “=0 [e(0)—e(HIV=0 ©

Our model is based on the isothermal nonlinear plagioyere ¢ (1) is the interface An concentration in the crystal.
clase growth model proposed by L'Heureux and Fowlenye have neglected the diffusion in the solid phase. A non-

[10,11]. In t.he r_est of t_his paper, we will refer to this model |inear phenomenological partitioning relation betwe(t)
as the partial differential equatiai’DE) model. We assume andc(0;t) was proposed by Lasaga4]:

crystal growth in one dimension, and we choose a frame of

reference moving with the interface, so thet0 corre- oot = KpBc(0t) 0
sponds to the crystallization front. The dynamical evolution (U= A+(Kp—1)c(0t) "

of the concentration of Afmole per unit volumgin the melt ] )

c(x,t) is then described by the diffusion equation If ¢’ refers to the concentration of another major component

(i.,e., Ab) in the solution, then Kp=c4(t)c'(0}t)/

Jc [c(0t)ci(t)] is an effective exchange-equilibrium constant
+V(e(0D), (1) whereasA=c(0t)+c'(0t) and B=c(t)+c.(t) are ap-
proximately constantgl4]. Whenc refers to the concentra-
tion of a trace element, a simple relation can also be used
that employs a constant partitioning coefficiéht

Jc  d

N
at - ax| o ox

X

where c(0,t) is the An concentration in the melt near the
interface, andD is the effective diffusion coefficient. We
neglect the concentration dependence of this coefficient. The cs(t)=Kc(0yt). (8
growth velocityV is determined only by the local concentra-
tion at the interface(0,t). Since molar volumes of An and

Ab are nearly equal, the molar concentratmoan be non- ; . X .
dimensionalized by the molar volume of AfO]. This way preSS|on(_8) is used in the reduced model described pelow.
) ' The nonlinear coupling necessary to generate self-oscillatory

It becpmes eguwalent to the molar composition of An in thesolutions is generated by the nonlinear concentration depen-
solution and is bounded<0c<1. dence of the growth velocity.

A realistic expression foW(c(0t)) for a given tempera- In conditions close to equilibrium, the partitioning coeffi-
ture T was approximated10] by fitting the empirical data  cjentsK, or K can be derived from the equilibrium phase
obtained for synthetic plagioclasgl?] to the Calvert- giagram, and are larger than unity. However, in situations

The nonlinear relatior{7) reduces to Eq(8) if we assume
c~const in the denominator of E¢7). For simplicity, ex-

Uhimann growth modefl13]: where far-from-equilibrium conditions prevai,; or K must
be derived from kinetic argumenf8] and can take values
V=U(RRH)3, (2)  smaller than 1.

In the modelEgs.(1)—(7)], a steady state solution fag

Here the growth is interpreted as a geometric average of twBXists. ForKp>1, this steady state solution is stable and the

mechanisms, a longitudinal growg, by surface nucleation system relaxes to this fixed point without oscillations. This
and a COﬂtiI’lLIOUS growtR, along the surfacel denotes a’ corresponds to the situation where the crystal has a constant,
C

velocity scale. Expressions f&. andR. are given b well defined An composition, as is observed in crystals
y - EXP s ¢ 9 y formed in close-to-equilibrium conditions. F&p<1 there

3a

is a regime where underdamped oscillations to the steady
ex;{ B b ) 3) state exist. For smaller valuesi¥f, , the system undergoes a
T-T,)' Hopf bifurcation, beyond which the attractor is a limit cycle.
For a typical value ot =0.3 atT=1400 °C, the Hopf bifur-
AG b cation occurs akKp=0.24[11]. A transition to chaotic be-
Rc:[l_ exp( - ﬁ) ex;{ TToT ) (4) havior through a period doubling sequence is also observed
9 for still smaller values oK. The simpler forn{Eq. (8)] of
. . the partitioning relation(7) produces similar sequences of
H‘?Te the parametex is rel_ated to the surface tension of the dynamical behavior: as decreases, there is a transition from
crlthal nucleush to t.he V'S.COS'ty .Of the ”.‘e't: andT=T, steady state to a limit cycle through a Hopf bifurcation and
—T is the undercooling, witfl; being the liquidus tempera- then to chao$10].
ture andT, the glass-transition temperaturkG is the dif-
ference in molar Gibbs free energy between the crystal and B. Reduction to two nodes
the melt. The concentration dependence of the growth veloc- o . o
ity comes mainly from the liquidus lin&,_(c(0t)) and the The q§ascr|pt|on of the diffusion process can be §|mpllf|ed
velocity scaleU(c(03)) [10]. py rewriting the modgl in terms of ordinary dlﬁgrentlal equa-
The boundary condition far from the crystal-melt inter- ions- Wang and Merinf15] proposed a dynamical model of
face is such that the concentration is equal to the bulk conz2NiNg in calcite and plagioclase, which is based on the evo-
centration of An in the melt: lution of the concentration of two compounds at one point
near the interface. This results in two coupled ordinary dif-
- ferential equations, which can generate oscillatory solutions.
c(»,t)=c. ©) Here we adopt the spirit of their approximations, and take the
idea one step further by suggesting a reduction of the crys-
The boundary condition at the growing front is derived fromtallization dynamics to the concentration evolution at two
the continuity of mass flux at the crystal interface: distanced ; andL,+L, from the growth fron{Fig. 1). This
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FIG. 1. Reduction of the plagioclase growth-transport processes 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
to the An concentration evaluated at two nodes: at the interface, an K

at the distancd.; from the interface. The smooth concentration

profile is approximated by linear segments. The concentration at the FIG. 2. Stability diagram for the global fixed point in the two-
distancel; +L, is taken to be equal to the bulk concentration of node model described by Eg4.3) and(14). The stability regions
An, ¢. The An concentration in the crystal, is related to the are as follows: S, saddle; UN, unstable node; UF, unstable focus;
concentration in the melt at the interfacgd) through the partition- SF, stable focus; SN, stable node. The parameters=a@e25 and

ing relation(8). d=0.5.

enables us to describe the essentially continuous process biere the dimensionless variables are=c(0)/c,3

two coupled ordinary differential equations that mimic the =¢(L,)/c,I=L,/L,,v(a)=V/IV,, and d=D/(V,L,), and
general dynamics of the parent model and allow for the posthe dimensionless time is=2tV,/L;. We have introduced
sibility of a limit cycle. A stability analysis can be easily v, as a typical growth velocity scale; for instance, the value
performed as well. We will refer to this approximation as thecorresponding to the steady growth regime. We approximate

two-node model, from the nomenclature conventionally usedhe crystal growth velocity as

in finite element techniques.

We integrate the diffusion equatigh) with respect to the

space coordinate, and take the following approximatjas$
(see Fig.

lecdx:[c(Ll)+c(0)]L1/2, 9)
0
Jc
gy, (DO (10

Similarly,

leH_chx: [c(Li+Ly)+c(L)ll/2, (11
L1

Jac
Ix

=[c(Li+Ly)—c(L)lL,. (12

Ly<x=L;+L,

The boundary conditiori5) becomesc(L,+L,)=c. After

imposing condition(6) and taking into account the partition
relation (8), we obtain the following system of two ordinary

differential equations:
a=f(a,f)=dB(1+I+12)—da(1+1)—dI?—v(a)Ka
+u(a)B(1+)—v(a)l, (13

B=f,(a,)=dI?—dBlI(1+1)+dla+v(a)l—v(a)lB.
(14

V(a)=Voexgm(a—ag], (15

where ag; is the concentration in the melt in the steady
growth regime andn is a constant. Equatiofi5) is a fairly
good approximation of the experimental dgi&] for a wide

range of temperaturesﬁf is large enougme.g.,6> 0.2, and
for a typical growth temperatur&@=1400°C[10]). For T
=1400 °C the corresponding value of the factois 2.96.

C. Stability analysis

For all values of the parameters in the two-node model
[Egs. (13) and (14)], there exists at least one fixed point,
which we will call “global.” By definition, we choose a
velocity scale such that=V, at this point for all parameter
values. A stability diagram for this fixed point is shown in
Fig. 2. Similarly to the full plagioclase growth modgtgs.
(1)—(7)], for K>1 the fixed point is always a stable node. As
K decreases, the fixed point changes to a stable focus and
then to an unstable focus through a Hopf bifurcation. For
reasonable values of the parameters 2.96, | =0.25, and
d=0.5 the Hopf bifurcation generates a stable limit cycle at
K=0.439. ForK<0.426, two new fixed points are created
through a tangent bifurcation: a saddle point and a stable
node. The limit cycle solution then loses its stability. Since
the Hopf bifurcation occurs at a value léfhigher than in the
PDE model, we do not expect quantitative agreement be-
tween the two models. However, the dynamics are analogous
in the neighborhood of the Hopf bifurcation. For our purpose
of investigating how external noise can influence the genera-
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tion of periodic solutions, the most interesting region is the c/é
one close to the Hopf bifurcation, where the global fixed 1504
point is a stable focus.

1.02

lll. STOCHASTIC ENVIRONMENTAL FLUCTUATIONS 1.00

Suppose the system is subjected to some environmental 0.98

noise such as fluctuations of temperature or concentrations of 0.96
elements. Since changes in the system’s parameters can be Y| B
caused by a variety of different factofse.g., gas releases, 50 100 150 x

magma mixing, etg, it is reasonable to assume that the am- ) ) ]
plitude of the fluctuations would follow a Gaussian distribu-  F!G- 3. Spatial concentration profile generated by the full PDE
tion. We also postulate that these changes occur over a tinfBodel. T=1400°C,c=0.3, K=0.25, andr=5x10"°. The deter-
scale which is much faster than the crystal growth time, andninistic attractor for these parameter values is a stable focus. The
can be considered uncorrelated. Therefore, we choose whiténsient solution is not shown. One space unit corresponds to
Gaussian noise as an approximation for the environment&-62#m.
fluctuations. Plagioclase crystals grow in an environment
where thermal diffusivity is much greater than component IV. RESULTS AND DISCUSSION
diffusion. Consequently, the process is mostly isothermal  concentration profiles were generated in two ways. The
[16]. We will |nve§t|gate the effects of fluctuations in the partial differential equatior(l) was solved using a Crank-
bulk concentratiorc of the element in a fashion similar to Nicholson finite difference scheme with iteration of the non-
Holtenet al. [4]. linear terms. The ordinary stochastic differential equations
In the full growth model described by the POE), the  (19) and (20), were integrated using the first order method
noise would appear in the modified boundary condit®  adapted from Ref[17], which turned out to be sufficiently
R precise for our purposes. The Stratonovich interpretation of
c(oo,t)=c[1+o&(t)], (16)  this algorithm was employed. Other algorithms such as He-
un’s[19] yield similar results. To obtain results analogous to
whereo denotes the amplitude of the noise relativetand  direct observations, we need to produce the spatial profile of
&(t) is a Gaussian white process with zero mean: the concentration in the crystal. In order to do so, the space
coordinate was obtained by integratigt0,11]:
(&(1))=0, (17)

t
(E(D&(t))=25(t—t"). (18 X(t)=JOv(a(t’))dt’- (21)

In the reduced two-node modétq. (13)], fluctuations of the
formc(L,+L,,t)=c[1+c&(t)] lead to multiplicative noise  Transformation of the time series into spatial profiles gener-

terms ally biases the shape of the concentration spikes toward the
crystallization front.
a=f(a,B)—(dIP+vl)oé(t), (19 We investigated the system’s response to external noise in
the region of the parameter space that corresponds to the
B="f,(a,B)+(dI2+u])o&(t), (200  deterministically stable fixed point close to the Hopf bifur-

cation. Typical crystal concentration profiles simulated ac-
wheref, andf, are the right hand sides of EQL3). We have  cording to the PDE and the two-node models, respectively,
disregarded the terms that contain the time derivative of th@&re shown in Figs. 3 and 4. The simulation results show that
noise. These terms become important when the correlatiofi€ generated patterns exhibit an oscillatory behavior. Thus
time of the noise approaches zero. However, preliminary

simulations, in which the algorithm of Refl7] for an c/é
Ornstein-Uhlenbeck colored noise was used, indicate that 1_500 -
there is a wide range of noise correlation times for which the
approximation(19) is valid. In this range the correlation time 0.95
of the noise is large enough so that the derivative terms are

negligible, and at the same time it is much smaller than the 0.90F
dynamical time scale of the deterministic system so that the

white noise approximation is still useful. It should be noted 0.85F

that, although the terms that contain the time derivative of
the noise have no physical meaning in the case of white
noise, they may play a significant role in the dynamics of the FIG. 4. Spatial concentration profile generated by the two-node
system in the case of colored noiéeg., it may shift the model. K=0.445, m=2.96, 1=0.25, d=0.5, ¢=0.3, and o
bifurcation point from its deterministic valu¢l8]). A =107 The deterministic attractor for these parameter values is a
detailed analysis of the effect of noise color is understable focus. The transient solution is not shown. One space unit
investigation. corresponds to 21.7am.

600 800 1000 x
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power spectrum of the respong20]. First, due to the non-
0.003 linearity of the system, the quality factor of the oscillator
deteriorates, and consequently the spectral peak may become
0.002 broader. This effect was found to be insignificant in the
present case. The width of the peak remained approximately
0.001 | constant over a wide range of noise intensities. Second, as
the noise kicks the system’s trajectory farther from its stable
0.000 ) ; point, the amplitude of the damped oscillation becomes

00 01 02 03 04 05 06 larger, thus increasing the height of the peak in the power
f spectrum. The exact dependence of the peak height on the
FIG. 5. Power spectrum computed from the time series correintensity of external perturbations is determined by the sys-
sponding to the space concentration profile shown in Fig. 3. Onéem’s nonlinearity, and may be partly controlled by noise.
frequency unit corresponds to 0.228 Hz. The strength of the response increases with the amplitude of
the noise but is limited by the system’s nonlinearity. As a
oscillatory concentration patterns are possible in the presengesult, the system’s response is maximized for a certain noise
of noise even when no oscillation exists deterministically. amplitude.
The amplitude of the stochastic oscillations of the crystal The strength of the system’s response to the external
An concentration derived from the PDE model is about 2%noise can be quantified ¥, the signal-to-noise ratitSNR).
for a noise amplitude of 510 3. This is of the same order While several definitions of the SNR are used in character-
of magnitude as the lower limit of observed concentrationizing the behavior of a noisy system near the bifurcation
variations. In Fig. 3, the average zone width iqu®7. [20,21], we choose the one that is best suited to describe our
Replacing the exponential diffusion profile of concentra-system’s response around a frequency of interest relative to
tion by linear segmenté~ig. 1) makes the interface compo-  the broad-spectrum response around this frequency. Thus we
sition more susceptible to the fluctuations of the bulk con-define the SNR at some particular frequefibyas the ratio of
centration. The two-node model thus possesses a slightifie area of the peak to the characteristic value of the back-
greater sensitivity to the external noise. Changes in crystajround spectral response at this frequef23j:
An concentration of the same magnitu@86) are generated
by a noise amplitude of only 10. In Fig. 4, the average Ot Ao
zone width is 416 um, which is large compared to actual R= j ZS(w)dw
zone widths. However, as mentioned earlier, quantitative Q-Aw;
agreement is not expected from this simplified model. Nev-

ertheless, both the full and reduced models exhibit Sim"aHereAwl+Aw2 defines the width of the integration window

qualitative dynamics in terms of the shape of the concentras;qoundQ. and S,(Q) is the value of the floor line at the

tion profiles. . _ . frequency of interest. The floor line is drawn to join the
A spectral analysis was performed on the time seriesyoyndaries of the peak defined by the integration window.

Close to the Hopf bifurcation, the frequency of the motion e functionS(w) is a Fourier transform of the correlation
around the stable focus manifests itself in the dynamics of,nction:

the noise-perturbed system. While the spectrum of the exter-
nal noise is flat, the characteristic peak of the system’s natu- .
ral frequency is clearly visible in the power spectr(ifigs. 5 _A—zf * o

) . X =C e Cs(t+ 7)cg(t)))dr. 23
and 6. The amplitude of the oscillations increases as the S(w) (et medt)ydr @3
noise amplitude increases. As the paramktercreases, thus

taking the system away from the Hopf bifurcation, the OSCII_The double bracket indicates that the correlation function is

lations become smaller in amplitude, and additional frequenévera ed over the realizations of the noise as well as over the
cies become more noticeable. 9

. : . . ephase of the deterministic damped oscillations that exist in
In general, before the Hopf bifurcation point, an increas . ) L
the region where the fixed point is a stable focus.

in the noise intensity may have two general effects on the The SNR’s obtained from both models have a distinct
1.0 peak(Figs. 7 and 8 The system’s response to the external
noise shows a steep increase in the range of small noise
intensities. As the noise increases, the SNR slowly decreases.
The response of the system to noise indicates that a so
called noisy precursor of the bifurcati¢@3] is observed in
the vicinity of the Hopf bifurcation. In general, before the
Hopf bifurcation, the power spectrum will have a strong re-
sponse at a frequency close to that of the limit cycle created
0.0 at the bifurcation point. The fact that the SNR curve passes
0.00 0.05 0-f10 015 020 through a maximum suggests that there is a so called coher-
ence resonancéCR) [20], i.e., the response of a nonlinear
FIG. 6. Power spectrum computed from the time series correSystem to noise is optimized for a certain noise amplitude.
sponding to the space concentration profile shown in Fig. 4. On&oherence resonance, also often called autonomous or inter-
frequency unit corresponds to 0.019 Hz. nal stochastic resonance, occurs in nonlinear oscillating sys-

1S,(Q). (22)

— o0

0.8

0.6

0.4

0.2
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FIG. 9. Spatial concentration profile generated by the PDE

FIG. 7. Signal-to-noise ratio computed from the PDE m0d6|'modeI.T=14OO°C,6=O.3, K=1.20, 0=5x10"3. The determin-
T=1400°C,c=0.3, andK=0.25. The deterministic attractor for jstic solution for these parameter values is a stable node. The tran-
these parameter values is a stable focus. The spectral responsesjgnt solution is not shown. One space unit corresponds tqu2d0
averaged over 400 noise realizations as well as over the phase of tRgyriations occur on a much larger horizontal scale than in the case
deterministic damped oscillations. The window of integration in Eq.of smallerK because of the strong dependence of the steady state
(22) contained 14 bins. velocity scale to the value df.

tems, whose internal dynamics depends on the noise ampli- Figure 10 shows a return map for the PDE model, i.e., the
tude. As pointed ouft20], the behavior of the SNR in CR is Width W, of the (n+1)th zone plotted versus the width
often very similar to that of stochastic resonaii6®). The W, of thenth zone in Fig. 3. This type of analysis is com-
phenomenon of SR typically occurs in periodically drivenmon in nonlinear dynamics to identify what might be a low
stochastic bistable systems, and has been the object of vaflimensional chaotic attractor. Since random noise is a key
ous studies in the past decader a review, see Ref22]). part of our models, there should be no particular pattern for
The resonancelike amplification of a weak external signapmall noise intensities. Indeed, in the low noise range the
occurs when its frequency matches the characteristic rate ¢ints seem to fill up the space evenly, which is a signature
stochastic hopping between the two states. In SR, the SNR & randomness. When the noise takes the system far enough
a function of the noise amplitude is a curve with a well- from its steady state, the deterministic dynamics of the sys-
defined maximum. Coherent resonance is said to occur whef@m prevails over the stochastic motion. For large excursions
the noise stimulates a coherent motion in an autonomouti€ return map seems to exhibit a triangular pattern similar to
system(i.e., without external signal the one observed for natural plagiocl§2d]. The emergence
Along with the main frequency, several lower frequenciesof such a pattern may indicate a possibility of noise-induced
consistently appear near the main peak, and become mof&aos. The return maps obtained from the reduced two-node
apparent as the system moves farther from the bifurcation ifnodel show no sign of such a patteffig. 11). This can be
the stable region. One of them, located close to the maigxpected because the triangular nonrepeating pattern may be
frequency, causes a beatlike pattern in the concentration pré-signature of chaotic attractor while the dimension of model
files (Fig. 3). (13) does not allow for chaotic solutions. The idea that zon-
It is interesting to note that even for valueskof-1, when  ing in plagioclase could be a result of a complex interplay
no damped deterministic oscillation exists, the external nois€etween the deterministic nearly oscillatory internal dynam-
has some organizing influence on the crystallization procesi§s and the external stochastic fluctuations is supported by
(Fig. 9. Here small variations of concentration form a cor- the fact that in many cases the return maps for plagioclase
related pattern that is very different from the input uncorre-appear random, and no specific fractal dimension can be
lated noise(in contrast to the case studied by Holtenal. ~ found[4].

4)).
4 V. FOKKER-PLANCK EQUATION
R » Given the Langevin type equatiof3) and(14), we can
3504 I Ne. obtain a corresponding equation describing the evolution of
so0{ 1 \ 71
.\
250 o __ 6-
.\.
2004 !' ;E 5
150 L) v L] v L] v L] v L] v T h ]
0 20 40 60 80 100 4
1056 .
FIG. 8. Signal-to-noise ratio computed from the two-node 33 7

model.K=0.445m=2.96,1=0.25, andd=0.5. The deterministic
attractor for these parameter values is a stable focus. The spectral
response is averaged over 1000 noise realizations as well as over FIG. 10. Return map corresponding to the space concentration
the phase of the deterministic damped oscillations. The window oprofile generated by the full PDE model of Fig. 3. One space unit
integration in Eq.(22) contained 32 bins. corresponds to 6.6z2m.
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p
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n
FIG. 11. Return map corresponding to the space concentration
profile generated by the two node model of Fig. 4. One space unit 11 " . "
corresponds to 21.78m. 1.0 15 2.0 2.5 a

. . o . . FIG. 12. Logarithm of the stationary probability density ob-
the probability density of finding the system in a certaintained as a solution of the Fokker-Planck equat@4) correspond-
region of parameter spa¢25]. This equation allows visual- ing to the 2-nodes modek =0.445, d=0.5, m=2.96, o=0.02,
ization of the shape of the probability density, to investigate,ngc=0.3. The deterministic attractor for these parameter values is
the possibilities of noise-induced states and shifts in the dej stable focus located at=2.15, andg=1.35. Darker areas cor-
terministic bifurcation points as the system parametersespond to higher probability densities. The spacing between level
change. In the case of white noise, this equaftthe Fokker-  curves is 0.2 and the value of incorresponding to the light level
Planck equatioflFPB] is easily derived and can be solved curve in the crater is-0.3. The presence of a crater suggests the
exactly for univariate systems. In most multivariate systemsexistence of a limit cycle and, consequently, a shift in the Hopf

the FPE must be solved numerically. bifurcation point (advancement The ‘“tail” represents a slow
The FPE for the two-node modgqgs.(19) and(20)] can  manifold, which is responsible for the appearance of sawtooth pat-
be written in the Stratonovich interpretation as terns in the spatial concentration profiles at higher noise intensities.
ap of,  of, ap ap ics, any relatively large fluctuation in the concentration
97 Ploa 9B toa 248 makes the system converge to this manifold very quickly.
After that, it takes a long time to come back to the vicinity of
o®| L[ #p  p %p the stable focus. This results in a sawtooth shape of the con-
2 9a?  Pp? “dadp gﬁinet;atlon time series and space profiles at high noise inten
ap  ap The question arises whether the noise truly advances the
+3gg'(—— —|+p(g'?+gg") |, (24)  Hopf bifurcation point. In a “naive” generic case, based on
da  dp the normal form for the Hopf bifurcation, postponement of

the bifurcation is expected. However, it was show8] for

wherep=p(a,B,7) is the probability density of the system the Brusselator systerfan important example exhibiting a
to be in a state aroundx(B) at time r, f;=f,(«,8) and  Hopf bifurcation that multiplicative noise coupled to a fast
f,=f,(a,B) are the deterministic terms defined in E¢3)  variable may cause an advancement of the bifurcation point.
and (14), g=g(a)=—[dI?+v(a)!] is the multiplicative Although for this particular case, analog simulatidi2§]
part of the stochastic term in Eq4.9) and(20), ando is the  found only postponements, some qualitative agreement with
intensity of the noise. In the stationary regimgp(d==0),  the prediction of Ref[18] in terms of shifts in the probabil-
the boundary conditions are naturally defined as the absend® density was observed. In our model, the system’s motion
of probability flux across the borders of the region 0is faster in a direction approximately perpendicular to the
<{a,,8}<1/€:. tail—sha}ped slow manifolq of Fig. '12. From Eqig) and

The stationary version of Eq24) was solved numerically (20). itis seen that the variable+ § is deterministic. There-
using the successive overrelaxation method. Figure 12 show8re: the noise effectively drives the system in the direction
the stationary probability distribution corresponding to the= —«, Which approximately corresponds to the direction

regime for which the stable focus exists before the Hopfof the fast motion. This provides a coupling mechanism be-
bifurcation (K=0.445, o=0.02). The coordinates are the tween the noise and a fast variable in analogy with the Brus-

dimensionless An concentrationsand 3 in the melt near Selator casd18]. Whether we can analytically prove ad-
the interface and at the distanice from it, respectively. The vancement of the Hopf bllfurcatlon |n_the present case, as it is
maximum of the probability density is shifted from the de- suggested by our numerical results, is currently the subject of

terministic fixed point. A small crater is formed, which sug- further studies.
gests the presence of a stochastic limit cycle, and conse-

qguently a noise-induced shift in the bifurcation point

(advancement A distinct feature is the presence of a tail-

shaped slow manifold adjacent to the area around the deter- We have shown that fluctuations of environmental param-
ministic fixed point. The maximum of the probability density eters can lead to pattern formation exhibiting an oscillatory
is located on this manifold. In terms of the system’s dynam-character in plagioclase. Such fluctuations may supposedly

VI. CONCLUSION
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be caused by magma mixing, changes igOHcontent, re- the concentration is approximated by straight lines, has a
leases of gases, or temperature variations. The exact physigifnamical behavior which is similar to the full PDE model
nature of these environmental fluctuations as well as theiaround the Hopf bifurcation point. Solution of the Fokker-
magnitude is an interesting question but outside the scope &flanck equation for this case suggests the possibility of ad-
the present work. vancement of the bifurcation due to noise.

In our model of plagioclase growth from melt, relatively  The presence of a slow manifold in the region of phase
small random fluctuations of the bulk concentration of Anspace adjacent to the area around the deterministic fixed
stimulate the internal dynamical processes, which result in @oint results in oscillations taking the form of spikes. Since
more or less regular zoning. Close to a Hopf bifurcation, thehe model is described by two variables, it is unable to pro-
noise causes oscillations with a frequency close to the frequce chaotic deterministic solutions. As a next step, one

quency that the system would have after the bifurcation. As &ould suggest a three-node reduction that would then allow
side effect, some lower frequencies are also generated. Thfe to simulate the chaotic behavior.

signal-to-noise ratio exhibits a distinct peak typical of coher-

ence resonance phenomena. The effect of noise thus extends

the available parameter space for which oscillatory zoning ACKNOWLEDGMENTS
may be observed.

The return maps generated according to the full stochastic The authors would like to thank the Natural Sciences and
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